7. Consider a heat engine as shown in Fig. Q₁ and Q₂ are heat added to heat bath T₁ and heat taken from T₂ in one cycle of the engine. W is the mechanical work done on the engine. If W > 0, then possibilities are: - a. $Q_1 > Q_2 > 0$ - b. $Q_2 > Q_1 > 0$ - c. $Q_2 < Q_1 < 0$ - d. $Q_1 < 0$, $Q_2 > 0$ - **Sol.** From the above diagram, we get that $W = Q_1 Q_2$ it is given that W > 0 Thus, there arises two cases - a. when both Q1 & Q2 are positive $$\Rightarrow$$ Q₁ > Q₂ > 0 b. when both Q₁&Q₂ are negative $$\Rightarrow$$ Q₁ < Q₂ < 0 option (a, c) is correct.