7. Consider a heat engine as shown in Fig. Q₁ and Q₂ are heat added to heat bath T₁ and heat taken from T₂ in one cycle of the engine. W is the mechanical work done on the engine. If W > 0, then possibilities are:

- a. $Q_1 > Q_2 > 0$
- b. $Q_2 > Q_1 > 0$
- c. $Q_2 < Q_1 < 0$
- d. $Q_1 < 0$, $Q_2 > 0$
- **Sol.** From the above diagram, we get that $W = Q_1 Q_2$

it is given that W > 0

Thus, there arises two cases -

a. when both Q1 & Q2 are positive

$$\Rightarrow$$
 Q₁ > Q₂ > 0

b. when both Q₁&Q₂ are negative

$$\Rightarrow$$
 Q₁ < Q₂ < 0

option (a, c) is correct.